
HDR-FOTOGRAFIE

GRUNDLAGEN PRAXISBEISPIELE

Vorweg: Begriffsklärung

- HDR High-Dynamik-Range hoher Dynamikbereich, großer Dynamikumfang, Hochkontrast
- HDRI HDR-Image
 optisch nicht darstellbares 32 Bit-Bild (Dateityp: EXR, HDR, TIFF)
- LDR Low-Dynamik-Range Niedrigkontrast
- Dynamik in der Fotografie

Helligkeitsunterschied, Verhältnis von größter zu kleinster Leuchtdichte, Tonwertspektrum, Tonwertumfang

Intraszenendynamik (in einem Bild)

Warum HDR-Fotos?

Fotos zeigen nicht, was der Mensch sieht!

Der Mensch sieht!

- Wir erkennen bei nächtlichen Straßenszenen alles zwischen Tiefschwarz und Gleißendhell weil das Auge dank des Gehirns wichtige Details selektiert.
- Unser Auge nimmt Lichtstärke logarithmisch wahr und kann sich der Situation anpassen.
- Wir verbinden aus Erfahrung mit (Bild-) Motiven Gefühle (Wärme, Geschwindigkeit).
- Wir akzeptieren die gewohnte Fotoqualität ...
- bis wir ein HDR-Foto sehen!

Die Kamera lichtet ab!

- Die Kamera scannt alles gleichwertig objektiv, erkennt Tiefschwarz allenfalls infrarot und Gleißendhell nur mit Filter, aber nicht beides in einer Szene.
- Der Kamerasensor erkennt Lichtstärke linear. Einiges davon filtert die (JPEG-) Komprimierung sogar noch weg.
- Die Kameraelektronik wird zwar beim Weißabgleich immer besser, kann aber keine Stimmung empfinden.
- Ein HDR-Foto zeigt mehr als ein gewohntes Foto ...
- realistischer oder anders!

Was macht ein gutes HDRI aus?

- ungewohnter Bildeindruck (look & feel)
- hoher Dynamikumfang
- große Farbtiefe
- detailreiche sehr helle und sehr dunkle Bildelemente zugleich
- verdichtete Lichtwerte und Farben im Mittelspektrum
- natürliche Wirkung, menschlicher Wahrnehmung ähnlich
- aber kein sogenannter "HDR-Stil"

"HDR-Stil"

- Bei Verdichtung der Lichtwerte können nicht alle Bildattribute erhalten werden, aber der natürlichen "Ausdruck".
- Programmierte Grundeinstellungen bewirken das meistens gut.
- Benutzer sollen motivtypisch nachregulieren – mehr nicht!
- Nachregulierung wird oft für surreale oder hyperreale Effekte übertrieben.
- Solche Kompressions-Artefakte wirken interessant, sind aber kein "HDR-Stil".

HDR ist kein kreativer Prozess sondern reine Technik!

Platzhalter für ein Beispielsfoto

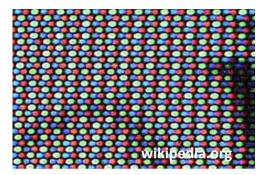
Dynamikumfang

	Medium	Verhältnis		LW (EV)
	nächtliche Straßenszene	50.000	:1	17
	Auge: Szene ohne direkte Lichtquelle	10.000	:1	14
	guter Monitor mit Hintergrundbeleuchtung	5.000	:1	
	TFT-Monitor	1.000	:1	
	RAW-Datei, Farbnegativ	ca. 800	:1	10
	projiziertes Dia	300	:1	8
	JPEG	100 - 300	0 :1	6,5 - 8
	Hochglanzfoto	65	:1	6

Farbtiefe

	Medium	Bit	Tonstufen je Farbkanal	Farbnuancen
	Schwarz-Weiß	1 Bit	2	
	geübtes Auge		60	500.000
	Farb-JPEG u. Monitor	8 Bit	254	16 Millionen
	RAW kameraintern	12 Bit	4.096	1 Milliarde
	digitales Röntgenbild	16 Bit	65.535	281 Billionen
\Rightarrow	HDR-Datei	32 Bit	4 Milliarden	79 (27 Nullen) Quadrilliarden

Farbdarstellungsunterschied


- RGB und sRGB Rot, Grün, Blau
 - Monitore "addieren" alle Farbtöne aus drei gleichzeitig <u>neben</u>einander leuchtende Grundfarben.
 - Technisch bedingt sind keine gesättigten Rot-, Grün- und Blau-Töne möglich.

• Siebfarbdruck druckt 4 Farbschichten <u>über</u>einander.

• Dateien des RGB- u. sRGB-Farbraums können nicht gedruckt werden, die Schwarz-Information fehlt.


Wie entsteht ein HDRI?

Direkt:

- HDR-Spezialkamera
 - unerschwinglich (zigtausend Euro), braucht aktive Kühlung gegen Bildrauschen
 - Leica bietet sie Profis an, die wegen höher Dynamik Filme vorziehen.
 - HDR-Panoramen, endoskopische Medizin, Lichtsimulation am Architekturmodell

Indirekt:

- DRI Dynamic Range Increase Dynamikbereichsausweitung
 - Aufnahmen einer Belichtungsreihe werden zeitaufwändig mit Photoshop nachbearbeitet bis nur Bildanteile mit Zeichnung übrig bleiben und dann übereinander kopiert, wobei leicht Unschärfe entsteht.
- Multi Exposure Mehrfachablichtung
 - "SilverFast" erzeugt aus einem mehrfach gescannten eines Dia ein Bild
- Kamera-Funktionen ("HDR", "Active D-Lighting" (ADL), Kontrastkorrektur usw.)
 - JPEG-Aufnahme mit S-förmiger Gammakurve
- Pseudo-HDR
 - Anhand einer RAW-Datei wird eine Belichtungsreihe mit mäßigem Dynamikumfang für Tone Mapping erzeugt.
- HDR-Tone Mapping
 - Aufnahmen einer Belichtungsreihe werden mit HDR-Software zu einem LDRI vereinigt.

Belichtungsreihe und HDR-Software

Belichtungsreihe

- Blende, Fokus und Weißabgleich gleichbleibend
- Belichtungsdauer in 2 EV-Schritten gestaffelt
- alle Lichter und Schatten in mindestens einer Aufnahme durchgezeichnet
- meistens genügen 3 4 Aufnahmen
- Mehr Aufnahmen führen bei der Ausrichtung leicht zur Unschärfe, unterschiedliche Blenden wegen unterschiedlicher Tiefenschärfe ebenfalls.
- Belichtungsreihen-Automatik (Bracketing) nutzen!
 - o eine Auslösung für mehrere Aufnahmen (Anzahl, Reihenfolge und EV-Stufen vorwählbar)
 - o für Nachtaufnahmen oft nicht nutzbar (max. 30 Sekunden)

HDR-Software (HDRI-Modul und Tone Mapping-Modul)

- Das HDRI-Modul errechnet aus durchgezeichneten Details aller Aufnahmen ein 32 Bit-HDRI,
- speichert und übergibt es an das Tone Mapping-Modul.

Tone Mapping

Ein 32-Bit-HDRI mit 25 EV muss für die Monitordarstellung auf 6 – 8 EV reduziert werden.

Würde es einfach auf 256 Bildwerte umgerechnet, wären die meisten Pixel zu dunkel.

"Intelligent" programmiertes Tone Mapping

- reduziert nur den Dynamikumfang aber verändert sonst möglichst nichts,
- dunkelt helle Stellen ab, hellt dunkle Stellen auf und komprimiert die Mitteltöne,
- leitet das Lichtverhältnis aus den Metadaten ab und passt die Farbinformationen an,
- arbeitet schnell und dennoch detailtreu,
- erhält den natürlichen Bildeindruck,
- bildet kaum Artefakte und
- speichert schließlich ein LDRI für die übliche Bildbearbeitung.

JPEG oder RAW für HDR?

Das JPEG-Format

- nutzt die logarithmische Helligkeitswahrnehmung des Auges und komprimiert Lichtinformationen
- speichert Kontrastumfang unterschiedlich abgestuft, nämlich

dunkle Bereiche in nur
 2 Abstufungen,

Mittlere in
 4 Abstufungen und

Lichter in
 128 Abstufungen

• zeigt bei Aufhellung durch Tone Mapping Tonwertabrisse die nicht naturgetreu ergänzt werden können.

Das RAW-Format

- speichert 4-fach höheren Kontrastumfang als JPEG-Dateien,
- braucht also beim Tone-Mapping weniger "Ergänzung" als das JPEG-Format.

JPEG "geht", aber RAW ist auch für HDR besser!

Ideale HDR-Motive

nutzen die charakteristischen HDR-Eigenschaften

- Motive mit sehr dunklen und sehr hellen Elementen
- Gegenlichtaufnahmen
- Innenaufnahmen von Gebäuden
- Nachtaufnahmen
- Landschaften mit beeindruckendem Himmel (Gewitterstimmung)
- Motive mit feinen Details in interessantem Licht:
 - Industrieanlagen mit Dampf und Licht (Erdölwerke)
 - beleuchtete Gitterkonstruktionen (Masten, Kräne)

vermeiden aber die Schwäche

- bewegte Motive; insbesondere bei Langzeitbelichtungen
- Aber manche HDR-Programme eliminieren Geisterbilder (Passanten) perfekt!

Fotoclub "Gut Licht"

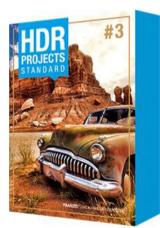
GRUNDLAGEN

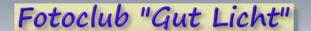
Verbreitete HDR-Programme

■ LR/Enfuse
Open-Source-Lightroom-Plugin
Donationsware: Spende 3,60 Euro

55 EUR

Full Dynamic Range Tools 39 EUR Basic-Version kostenlos


Open-Source-Einsteigersoftware



Viele Einstellungen, sehr gute Ergebnisse perfekter Workflow, "konkurrenzlos". 35 – 83 EUR, Testversion kostenfrei.

Für surreale Effekte ohne natürliches Erscheinungsbild. 150 – 300 EUR

Mein Fazit

- Wären echte HDR-Kameras erschwinglich, sähen heute alle kontrastreichen Aufnahmen wie ein gutes HDRI aus.
- HDR-Programme machen das heute schon möglich!
- Mehr Zeichnung in Schatten und Lichtern sind den HDR-Aufwand wert.
- HDR-Vorteile ähneln dem Fortschritt durch das Dia:
 Bessere Schatten und Lichter damals viel besser als Fotopapier!